
Facial Recognition Attendance Tracker
Documentation

Release 1.0.0

Samrat Sahoo

Jun 18, 2020

Contents

1 Table of Contents 1
1.1 Setup . 1
1.2 Directories . 1
1.3 Files . 7
1.4 Contact . 35

2 About the ISM Program 37

3 Project Preface 39

4 Acknowledgements 41

i

ii

CHAPTER 1

Table of Contents

1.1 Setup

Setting up the attendance tracker is very easy!

• Step 1: Clone the repository from GitHub using git clone https://github.com/SamratSahoo/
Facial-Recognition-Attendance-Tracker.git

• Step 2: Make sure you have Python 3.6 or Higher installed

• Step 3: Run pip install -r reqs.txt

To Run the application, you can use python Interface.py

1.2 Directories

1.2.1 Folder List

Cascades

This is the Cascades Directory! Within the Cascades Directory, you will notice another folder known as data. There
are files within here that are named such as haarcascade_eye.xml. These files are known as Haar Cascades!
Haar Cascades are most notably used for facial detection through finding key features within the face. You will see
arbitrary values within the cascades such as -1.2550230026245117e+00 which are computer generated values
based on the features of the faces They were previously used in original iterations of this facial recognition project,
however, because of the integration of face detection with the face_recognition library, these are no longer used. These
files while not used are kept as archives of previous works and to explain the facial recognition process.

1

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

Naming Conventions

Thera are several cascades within the Cascades folder. These cascades all detect different features of the face. For
example the haarcascade_eye.xml detects eyes in faces. The haarcascade_frontalface_alt.xml
detects the face. The haarcascade_frontalface_alt2.xml also detects the face however it is just another
version of the original haar cascade that was created.

Docs

The docs folder has one sole purpose: to house the documentation of this project. The HTML files that make up the
documentation can be found in the Docs folder. Within the docs folder there are 2 subdirectories along with 2 batch
files.

Build Subdirectory

The build subdirectory houses all of the automatically generated HTML files for this project. This subdirectory is
automatically updated when the make html command is run.

Source Subdirectory

The source subdirectory houses all of the RST files for this project. The RST files are very similar to markdown
because they allow for an ease of creating web-based documentation through the ReadTheDocs system without long
hours of web development.

Batch Files

The batch files serve as the method to convert the RST files to HTML files. When the make html command is run,
these batch files scan the RST files and make the respective HTML files based on RST files.

Encodings

In software development, taking into account the runtime is easily one of the most important aspects of developing a
powerful program. In this project, the Encodings directory serves as one of the key features to reduce runtime. The
Encodings directory houses several files such as SamratEncoding.npy. This is a numpy file in what is known
as an embedding.

Purpose in Facial Recognition Process

In the image pre-processing state, it is necessary to convert raw images to usable data for the computer. In order to
do that, we convert the images into numpy arrays using the Histogram of Oriented Gradients algorithm. These files
hold numpy arrays for the information of the person so that the computer would not have to recalculate these arrays
every time the program is run. This drastically reduced runtime from 10 minutes to to 10 seconds. This was a major
improvement from the original program design that had to recalculate data over and over again.

2 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

Example Executions

Here you can find some example executions of the facial recognition process.

1.2. Directories 3

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

4 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

1.2. Directories 5

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

List Information

The list information folder has 3 different text files: Encoding Names, Face Names Known, Full
Student Names, These text files are loaded into lists within the python files. These text files have also allowed for
the feature of dynamic addition of faces to emerge

• Encoding Names.txt: The Encoding Names file holds the names of the numpy files found in the
Encodings subdirectory. This text file also adds names of new encodings.

• Face Names Known.txt: The Face Names Known file allows us to attribute the faces in the database
to encodings. This consists of only the first names.

• Full Student Names.txt: The Full Student Names allows us to store full names so that they can
be outputted onto a excel spreadsheet, google sheet, or text file.

Model

The Model directory holds the machine learning models that are used for liveness detection. Within the directory there
are 2 files: the H5 model file and the Json model file.

• model.h5: This file holds the actual distribution of data for the model. It is then run through Keras using the
LivenessModel.py to process this data into usable information

• model.json: This is a file that also holds model information with the necessary requirements to process the
model. This file is actually readable to humans.

People Images Folder

The People images folder is the local database of photos for each person. Within the People Images folder you will see
subdirectories of each of the names found in List Information/Face Names Known and each subdirectory
holds the respective photos of that person. Within each person subdirectory you will see 2 photos, 0.jpg, 1.jpg

6 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

JPG File Names Explained

The JPG files are named 0.jpg, 1.jpg respectively because within EncodingModel.py we have a method
called encodeDirectory() which requires at least 2 images to process and outputs an embeeding to
Encodings/. The 0.jpg, 1.jpg are the two files that it processes.

Static

The static folder was made because with the flask application framework, it is necessary to have a static directory to
hold cascading stylesheets files, images and javascript files. Within the static folder, you will see a css folder js
folder and an img folder.

• css: Holds Cascading Stylesheets Files

• js: Holds JavaScript Files

• img: Holds Images

Templates

The templates folder is another necessary folder for the flask web application framework. It houses all of the
HTML files that created the interface of the project. The starting tab is defined by index.html.

1.3 Files

1.3.1 File List

Application.py

The Application.py file was originally used to run the core application by checking if there were enough images in
each of the respective folders in People Images but now has been abandoned.

Imports

import os
from init import *
from Sheets import *

• os: Necessary to access file systems

• init: Necessary to access the arrays

• Sheets: Necessary to access the formatPage() method that is later used

Functions

The getFolderSize() function makes sure there are at least 2 different people in the People Images/ di-
rectory before proceeding with the application. If there are less than 2 people it will bypass that and make sure the
application runs anyways

1.3. Files 7

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

def getFolderSize():
folderSize = len(next(os.walk("People Images/" + str(faceNamesKnown[x])))) - 1
if folderSize < 2:

folderSize = 2
return folderSize

Main Method

The main method will run TransferLearning.py if all of the folders have the correct amount of images.

if __name__ == '__main__':
for x in range(0, len(faceNamesKnown)):

formatPage()
if getFolderSize() == 2:

import TransferLearning

AttendanceExcel.xls

This is a file that visually presents the data on a certain day through a Microsoft Excel Sheet.

AttendanceSheet.txt

This is a text file that lexicographically presents the attendance on a certain date.

8 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

Camera.py

The Camera.py file serves to be the connection between the HTML dashboard and the OpenCV camera. The
Camera.py file controls all the camera functions.

Imports

import os
import sys
import cv2
import face_recognition
from TransferLearning import loadDictionary, loadLists, toList, getLivenessValue,
→˓runInParallel, dynamicAdd, \

getFolderSize, checkIfHere
from init import *
import numpy as np
from Excel import *
from LivenessDetection import getModel, getModelPred
import socket
from Sheets import *
from timeit import default_timer as timer

• os: Necessary to access file systems

• sys: Necessary to access the operating system

• cv2: Necessary to access computer vision tools

• face_recognition: Necessary to access face recognition tools

• TransferLearning: Necessary to access helper methods in original program

• init: Necessary to access the arrays

• numpy: Necessary to access Linear Algebra functions

• Excel: Necessary to access Microsoft Excel methods

1.3. Files 9

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

• LivenessDetection: Necessary to access the Liveness Detection models

• socket: Necessary to check internet connection

• Sheets: Necessary to access Google Sheets methods

• timeit: Necessary to take times

Feature Control Variables

These variables serve to control different features related to the camera

global dynamicState
global pauseState
global onlineMode
dynamicState = False
pauseState = True
onlineMode = False

• dynamicState: Controls whether you want to add a new person or not

• pauseState: Controls whether the camera will be paused or not

• onlineState: Controls whether to use google sheets or excel

Static Functions

The addPerson() toggles the dynamicState variable from True to False and vice versa.

def addPerson():
global dynamicState
dynamicState = True

The internetCheck() function will use the socket class and try to create a connection with Google.com. If it
fails, it will throw an Exception and return False.

def internetCheck():
try:

socket.create_connection(("www.google.com", 80))
return True

except OSError:
pass

return False

Objects

The VideoCamera Object initializes with several starting variable amounts including initial arrays, liveness models,
timestamps, encodings, and internet connections.

def __init__(self, source):
try:

Call on OpenCV Video Capture
self.video = cv2.VideoCapture(source)

Some global variables

(continues on next page)

10 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

(continued from previous page)

global processThisFrame, faceLocations, faceEncodings, faceNames, encodingList,
→˓encodingNames

global faceNamesKnown, fullStudentNames, inputFrames, model, start, internetCheck

Initialize variables
faceLocations = []
faceEncodings = []
faceNames = []
inputFrames = []
processThisFrame = True

Load List information
fullStudentNames = loadLists("List Information/Full Student Names") # List with

→˓full Student Names
faceNamesKnown = loadLists("List Information/Face Names Known") # List With

→˓Face Names
encodingNames = loadLists("List Information/Encoding Names") # List With

→˓encoding names
loadDictionary("List Information/Face Names Known", faceEncodingsKnown) #

→˓Dictionary with Encodings
encodingList = toList(faceEncodingsKnown)

Load encodings
for x in range(0, int(len(encodingList))):

encodingList[x] = np.load("Encodings/" + str(encodingNames[x]))

Load Liveness Model
model = getModelPred()

Start Late timer
start = timer()

Internet Check
internetCheck = internetCheck()

except Exception as e:
print(e)

When it is destroyed, it deletes the camera.

def __del__(self):
Delete Video Capture
self.video.release()

Object Functions

The addFace() function will apply the dynamicAdd() from TransferLearning.py if and only if a face
is found and it is Unknown. It will then reload all of the arrays and encodings, At the end, it will turn the
dynamicState variable to False.

def addFace(self):

Some global variables
global dynamicState, encodingNames, fullStudentNames, faceNamesKnown,

→˓encodingList, frame
(continues on next page)

1.3. Files 11

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

(continued from previous page)

Only run Dynamic Addition if a face is found and is unknown
if 'Unknown' in faceNames and len(faceLocations) > 1:

Run dynamic core addition
dynamicAdd(frame)

Relaod Lists
fullStudentNames = loadLists("List Information/Full Student Names") # List

→˓with full Student Names
faceNamesKnown = loadLists("List Information/Face Names Known") # List With

→˓Face Names
encodingNames = loadLists("List Information/Encoding Names") # List With

→˓encoding names
loadDictionary("List Information/Face Names Known", faceEncodingsKnown) #

→˓Dictionary with Encodings

Run Encoding Model as necessary
if getFolderSize("Encodings/") != len(encodingNames):

import EncodingModel

Reload Enecodings
encodingList = toList(faceEncodingsKnown)
for x in range(0, int(len(encodingList))):

encodingList[x] = np.load("Encodings/" + str(encodingNames[x]))

Turn off dynamic addition once done
dynamicState = False

The getRawFrame() function will return solely the frame the OpenCV camera sees.

def getRawFrame(self):
Returns the raw frame
_, frameToReturn = self.video.read()
return frameToReturn

The goOnline() function will control the onlineMode feature control variable to control whether to use online or
offline mode.

def goOnline(self):
global onlineMode
onlineMode = not onlineMode

The getFrame() function is the core function and has been split into different parts for the purpose of readability
and easier to understand documentation.

Here we are declaring some global variables that are used universally throughout Camera.py

def getFrame(self):
try:

Some global variables
global processThisFrame, faceLocations, faceNames, encodingList,

→˓faceNamesKnown, fullStudentNames
global model, inputFrames, frame, dynamicState, start, internetCheck,

→˓onlineMode

Next we are reading the frame and converting it into the correct dimensions and formats for our needs. This also
includes calculating the elapsed time.

12 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

Read OpenCV video
success, frame = self.video.read()
Resize as necessary
smallFrame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
Change Colors as necessary
rgbSmallFrame = smallFrame[:, :, ::-1]
End time for Late feature
end = timer()
Calculate time spent
elapsedTime = end - start

We are then using the processThisFrame variable to process every other frame so that the User Experience is
better. We also calcualte the locations and encodings of the faces in the current frame being analyzed. We declared an
empty list that will store all face names in the frame.

Only process every other frame of video to save time
if processThisFrame:

Find all the faces and face encodings in the current frame of video
faceLocations = face_recognition.face_locations(rgbSmallFrame)
faceEncodings = face_recognition.face_encodings(rgbSmallFrame, faceLocations)

Empty Face names for every iteration
faceNames = []

We then calculate the blur amount using a Laplacian function and if the blur is low enough we will perform face
recognition to the frame. The face recognition is done through calculating a Frobenius Norm to find the variance
between saved encodings and encodings within the frame. The lowest variance is the face that is recognized. If the
variance is an outlier, then it will assume the face is not in the database and give it an unknown tag.

Calculate Blur; if its too blurry it won't do facial recognition
blurAmount = cv2.Laplacian(frame, cv2.CV_64F).var()

if blurAmount > 40:
for faceEncoding in faceEncodings:

See if the face is a match for the known face(s)
matchesFound = face_recognition.compare_faces(encodingList, faceEncoding)
name = "Unknown"

Or instead, use the known face with the smallest distance to the new
→˓face

faceDistances = face_recognition.face_distance(encodingList, faceEncoding)
matchIndex = np.argmin(faceDistances)
if matchesFound[matchIndex]:

name = faceNamesKnown[matchIndex]
Add name to the faceNames array
faceNames.append(name)

Process every other frame
processThisFrame = not processThisFrame

This will calculate the coordinates to draw the faces. It also calculates liveness values and blur amounts once again.

Display the results
for (top, right, bottom, left), name in zip(faceLocations, faceNames):

Scale back up face locations since the frame we detected in was scaled to 1/4
→˓size

top *= 4
right *= 4
bottom *= 4

(continues on next page)

1.3. Files 13

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

(continued from previous page)

left *= 4

Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), (255, 0, 0), 2)

Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 35), (right, bottom), (255, 0, 0), cv2.

→˓FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
Recalculate blur
blurAmount = cv2.Laplacian(frame, cv2.CV_64F).var()
Calculate liveness amount
livenessVal = getLivenessValue(frame, inputFrames, model)

This part will actually draw the box with a name if and only if the image is alive.

if liveness is over 95% then continue recognition
if livenessVal > 0.95:

Blur must be over 40 in order to accurately recognize a face
if blurAmount > 40:

cv2.putText(frame, name, (left + 6, bottom - 6), font, 1.0, (255, 255, 255),
→˓1)

This part will check if the User is online or offline and their respective mode. If they are online and in online mode, it
will record attendance on Google Sheets. This part will also check if they are late or not.

Online/Offline Mode
if internetCheck and onlineMode:

for x in range(0, len(fullStudentNames)):
if name in fullStudentNames[x]:

Check if they are late
if elapsedTime > 300:

updateLatePerson()
else:

updatePresentPerson()

If they are offline it will put it on the Microsoft Excel sheet.

else:
for x in range(0, len(fullStudentNames)):

if name in fullStudentNames[x]:
Check if they are late
if elapsedTime > 300:

updateLatePersonExcel(fullStudentNames[x])
else:

updatePresentPersonExcel(fullStudentNames[x])

This will record it on the text file

for x in range(0, len(faceNamesKnown)):
checkIfHere(name, faceNamesKnown[x])

If it is a spoof, it will warn the user,

else:
Do not mark anyone if its a spoof

(continues on next page)

14 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

(continued from previous page)

cv2.putText(frame, "WARNING: SPOOF DETECTED", (100, 75), font, 1.0, (0, 0, 255),
→˓2)

This will encode the frame into a .jpeg file so that it can be displayed on the Flask Dashboard.

Encode frame so it can be displayed on a webpage
ret, jpeg = cv2.imencode('.jpg', frame)
return jpeg.tobytes()

This will catch any potential errors that may occur.

except Exception as e:
Enceptions to get file + line numbers errors are on
exceptionType, exceptionObject, exceptionThrowback = sys.exc_info()
fileName = os.path.split(exceptionThrowback.tb_frame.f_code.co_filename)[1]
print(exceptionType, fileName, exceptionThrowback.tb_lineno)
print(e)

DynamicAddition.py

The DynamicAddition.py file serves as a file that houses helper methods to assist with the dynamic addition
process.

Imports

import cv2
from EncodingModel import *
import numpy as np

• cv2: Necessary to access computer vision tools

• EncodingModel: Necessary to access modules to encode images into usable data

• numpy: Necessary to access Linear Algebra functions

Methods

The pauseCamera() method is used to pause the camera. This is no longer used but was once used in
TransferLearning.py

def pauseCamera():
cv2.waitKey(-100)

The dynaicAdd() method is used to add faces. This method was also once used in TransferLearning.py but
since has been abandoned. This gets the full name of the person.

def dynamicAdd(image):
firstName = input("What is your first name: ")
lastName = input("What is your last name: ")
fullName = firstName + " " + lastName

Then the text files that store names of people are edited.

1.3. Files 15

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

with open("List Information/Full Student Names", "a") as f:
f.write(fullName)
f.write("\n")
f.close()

with open("List Information/Face Names Known", "a") as f:
f.write(firstName)
f.write("\n")
f.close()

with open("List Information/Encoding Names", "a") as f:
f.write(firstName + "Encoding.npy")
f.write("\n")
f.close()

Separate directories are made for each person to store their images and their images are saved

os.makedirs("People Images/" + firstName)
cv2.imwrite(os.path.join("People Images/" + firstName, '0.jpg'), image)
cv2.imwrite(os.path.join("People Images/" + firstName, '1.jpg'), image)

Their images are encoded and the encoding is saved as a numpy file.

encoding = encodeDirectory(firstName)
np.save('Encodings/' + str(firstName).replace(" ", "") + 'Encoding.npy', encoding)

EncodingModel.py

The EncodingModel.py File serves as the core for the encoding process. This allows images to be converted into
usable data for the computer to use.

Imports

import face_recognition
import numpy as np
import os
from init import faceNamesKnown, faceEncodingsKnown, encodingNames

Methods

The encodeFace() method takes in an image path and return an encoding after having analyzed the image.

def encodeFace(imageDirectory):
Load Images
image = face_recognition.load_image_file(imageDirectory)
Encode Images
encoding = face_recognition.face_encodings(image, None, 5)[0]
return encoding

The encodeDirectory() method takes in a directory of images and returns an average encoding after having
analyzed the multiple images. It takes advantage of the encodeFace() method to encode several images. It then
adds up the encodings and takes the average of all of the encodings.

16 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

Method encodes a directory of images and returns the average encoding of the images
def encodeDirectory(directoryName):

Create list for all encodings
allEncodings = []
Go through directory of files
for filename in os.listdir("People Images/" + directoryName):

Get amount of files in directory
fileAmount = len(next(os.walk("People Images/" + directoryName)))
if filename.endswith(".jpg"):

iterate through files in directory
for fileNum in range(0, fileAmount - 1):

Add encodings to list
allEncodings.append(encodeFace("People Images/" + directoryName + "/"

→˓+ str(fileNum) + ".jpg"))
List Length
listLength = len(allEncodings)
Return average of encoded arrays array
return sum(allEncodings) / listLength

Main Method

The main method will encode every directory in the People Images folder and save the files for each respective
person in the Encodings folder.

for x in range(0, len(faceNamesKnown)):
faceEncodingsKnown[x] = encodeDirectory(faceNamesKnown[x])
np.save('Encodings/' + encodingNames[x], faceEncodingsKnown[x])

Excel.py

The Excel.py file controls the outputs to a Microsoft Excel sheet. There are several helper methods in Excel.py
that make outputting possible.

Imports

from datetime import datetime

from openpyxl import Workbook
from openpyxl.styles import PatternFill, Font
from init import *

• datetime: Necessary to get the date

• openpyxl: Necessary to manipulate the Excel file

• init: Necessary to access the arrays

Methods

The loadLists() method will allow for us to load the list information from Full Student Names.txt into
the arrays in init.py

1.3. Files 17

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

def loadLists(textFile):
with open(textFile) as file:

list = file.readlines()
file.close()
list = [x[:-1] for x in list]

return list

The absentCell() method marks a given cell red.

def absentCell(sheet, cell):
Add Red Color Cell Format
redFill = PatternFill(start_color='F4CCCC',

end_color='F4CCCC',
fill_type='solid')

sheet[cell].fill = redFill

The presentCell() method marks a given cell green.

def presentCell(sheet, cell):
Add Green Color Cell Format
greenFill = PatternFill(start_color='D9EAD3',

end_color='D9EAD3',
fill_type='solid')

sheet[cell].fill = greenFill

The lateCell() method marks a given cell yellow.

def lateCell(sheet, cell):
Add Yellow Color Cell Format
yellowFill = PatternFill(start_color='FFF2CC',

end_color='FFF2CC',
fill_type='solid')

sheet[cell].fill = yellowFill

The resetCell() method marks a given cell white.

def resetCell(sheet, cell):
Add White Color Cell Format
whiteFill = PatternFill(start_color='FFFFFF',

end_color='FFFFFF',
fill_type='solid')

sheet[cell].fill = whiteFill

The addKeyExcel() method adds the Sheet key to the upper left hand corner of the sheet.

def addKeyExcel(sheet):
Reset Top Cells
for n in range(1, 5):

cellLocation = 'A' + str(n)
resetCell(sheet, cellLocation)

Add Key Colors and Labels
presentCell(sheet, 'A2')
absentCell(sheet, 'A3')
lateCell(sheet, 'A4')
sheet['A1'] = 'KEY'
sheet['A1'].font = Font(bold=True)

(continues on next page)

18 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

(continued from previous page)

sheet['A2'] = 'Present'
sheet['A2'].font = Font(bold=True)
sheet['A3'] = 'Absent'
sheet['A3'].font = Font(bold=True)
sheet['A4'] = 'Late'
sheet['A4'].font = Font(bold=True)

The addStudentNamesExcel() method adds the Student names in the first column of the Excel sheet.

def addStudentNamesExcel(sheet):
Format and write Student Name subtitle
sheet['A8'] = 'Student Names'
sheet['A8'].font = Font(bold=True)
Write student names from init list
for n in range(0, len(fullStudentNames)):

cellLocation = 'A' + str(9 + n)
sheet[cellLocation] = fullStudentNames[n]

The getRowNumber() method gets the row number to mark. This is used to mark a certain student.

def getRowNum(personToFind):
startCellNum = 9
for x in range(0, len(fullStudentNames)):

Find how many to go down from row 9 by comparing names + arrays
if fullStudentNames[x].strip() == personToFind.strip():

Update row to go to
startCellNum += x

return startCellNum

The getColumnLetter() method gets the column letter to mark. This is used to mark on a certain date.

def getColumnLetter(sheet):
Start column is B
cellStartNum = ord('B')
Get date because column will correspond
date = datetime.today().strftime('X%m/X%d')
date = date.replace('X0', 'X').replace('X', '')
columnFound = False
Compare current date to column date
while not columnFound:

currentCell = str(chr(cellStartNum)) + '8'
If found, return cell column Letter
if sheet[currentCell].value == date:

return cellStartNum
else:

cellStartNum += 1

The addDateExcel() method adds the current date. In coordination with the application, it marks the date the
application is launched.

def addDateExcel(sheet):
Get and format date
date = datetime.today().strftime('X%m/X%d')
date = date.replace('X0', 'X').replace('X', '')
character number for "B"
cellStartNum = ord('B')

(continues on next page)

1.3. Files 19

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

(continued from previous page)

Flag boolean to exit loop
emptyDateCell = False

while not emptyDateCell:
Get Current cell location
currentCell = str(chr(cellStartNum)) + '8'
If the date is already there, then you do not need to add another column
if sheet[currentCell].value == date:

break
else:

If cell is not empty, move over one cell horizontally
if sheet[currentCell].value != None:

cellStartNum += 1
else:

If cell is empty, write the date
sheet[currentCell] = date
sheet[currentCell].font = Font(bold=True)
emptyDateCell = True

The formatPageExcel() method formats the page as needed if it has already not been formatted.

def formatPageExcel(sheet):
Adds key, student names, and current date
if sheet['A1'] != 'KEY':

addKeyExcel(sheet)
addStudentNamesExcel(sheet)
addDateExcel(sheet)

The updatePresentPersonExcel() method updates an excel sheet passed on the person’s name.

def updatePresentPersonExcel(personToFind):
Change numerical values to cell value
cellToPresent = chr(getColumnLetter(ws)) + str(getRowNum(personToFind))
Mark present
presentCell(ws, cellToPresent)

The updateAbsentPersonExcel() method updates an excel sheet passed on the person’s name.

def updateAbsentPersonExcel(personToFind):
Change numerical values to cell value
cellToAbsent = chr(getColumnLetter(ws)) + str(getRowNum(personToFind))
Mark Absent
absentCell(ws, cellToAbsent)

The updateLatePersonExcel() method updates an excel sheet passed on the person’s name.

def updateLatePersonExcel(personToFind):
Change numerical values to cell value
cellToAbsent = chr(getColumnLetter(ws)) + str(getRowNum(personToFind))
Mark Late
lateCell(ws, cellToAbsent)

The markAbsentUnmarkedExcel() method will mark all people who were not present as absent.

def markAbsentUnmarkedExcel():
rowStart = 9

(continues on next page)

20 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

(continued from previous page)

for x in range(0, len(fullStudentNames)):
cellToCheck = str(chr(getColumnLetter(ws))) + str(rowStart)
if str(ws[cellToCheck].fill.start_color.index) not in '00D9EAD3':

absentCell(ws, cellToCheck)
rowStart += 1

else:
rowStart += 1

wb.save("AttendanceExcel.xls")

Main Method

The main method here will first load all of the lists, then create a Workbook and worksheet for the Excel Spreadsheet.
Finally, it will format the spreadsheet as needed.

try:
fullStudentNames = loadLists("List Information/Full Student Names")
wb = Workbook()
ws = wb.active
formatPageExcel(ws)

except Exception as e:
print(e)

init.py

The init.py file serves as a file where every file in the project can access globally declared arrays. This allows for
shared variables within files. All variables are empty because they are inputted respective values in other files.

Dictionaries

The faceEncodingsKnown dictionary is used to hold an encoding name as its key and the respective encoding as
its value.

faceEncodingsKnown = {

}

Lists

The faceNamesKnown list holds the first names only from the Face Names Known.txt file.

faceNamesKnown = [

]

The fullStudentNames list holds the first and last names from the Full Student Names.txt file.

fullStudentNames = [

]

1.3. Files 21

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

The encodingNames list holds the encoding namesfrom the Encoding Names.txt file.

encodingNames = [

]

Interface.py

The Interface.py file controls the complete backend for this project. This includes all of the interface button
bindings.

Imports

import sys
from flask import render_template, Flask, Response
from webui import WebUI
from Camera import VideoCamera
import os
from shutil import copyfile
from DynamicAddition import dynamicAdd
from Excel import markAbsentUnmarkedExcel

• sys: Necessary to access the operating system

• flask: Necessary to access Python Backend to Web Application Front End

• webui: Necessary to turn the flask web app to a desktop interface

• Camera: Necessary to access Camera Object and functions

• os: Necessary to access file systems

• shutil: Necessary to be able to copy files

• DynamicAddition: Necessary to access DynamicAddition methods

• Excel: Necessary to access Microsoft Excel methods

Variables

The app variable declares that the HTML, CSS, and JS is to be used for a flask web application. The ui variable
converts the app to a desktop app.

app = Flask(__name__)
ui = WebUI(app, debug=True)

These global variables are used to control states of different features or store certain values. .. code-block:: python

global cameraState, addState, frames, framesRaw, onlineState cameraState = False addState = False on-
lineState = False framesRaw = [] frames = []

Page Access Methods

These methods are all used to access different pages or tabs within the Interface.

22 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

@app.route('/')
@app.route('/index')
def indexPage():

return render_template('index.html')

@app.route('/configure')
def configurePage():

return render_template('configurations.html')

@app.route('/attendance')
def attendancePage():

return render_template('attendance.html')

@app.route('/settings')
def settingsPage():

return render_template('settings.html')

@app.route('/contact')
def contactPage():

return render_template('contact.html')

@app.route('/help')
def helpPage():

return render_template('help.html')

Methods

The downloadText() method and downloadExcel() method, are both there to make a copy of the text file or
Excel file into the user’s downloads directory.

@app.route('/download-text')
def downloadText():

try:
finalPath = os.path.join(os.path.expanduser("~"), "Downloads/AttendanceSheet.

→˓txt")
copyfile('AttendanceSheet.txt', finalPath)

except Exception as e:
print(e)

return render_template('index.html')

@app.route('/download-excel')
def downloadExcel():

try:
finalPath = os.path.join(os.path.expanduser("~"), "Downloads/AttendanceExcel.

→˓xls")
copyfile('AttendanceExcel.xls', finalPath)

except Exception as e:
print(e)

return render_template('index.html')

1.3. Files 23

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

The startCamera() and stopCamera() methods are used to toggle the camera on and off based on the button
pressed. If the Start Camera button is pressed, startCamera() is called and cameraState will be True but if
the Stop Camera button is pressed, stopCamera() is called and cameraState will be False and the camera
will turn off.

@app.route('/start-camera')
def startCamera():

global cameraState
cameraState = True
return render_template('index.html')

@app.route('/stop-camera')
def stopCamera():

global cameraState
cameraState = False
markAbsentUnmarkedExcel()
return render_template('index.html')

The gen() method is the core method for Interface.py. It first calls the values global variables.

def gen(camera):
global addState, cameraState, frames, framesRaw, onlineState

If the application is not set to dynamically add a face, it will get a raw frame and converted frames using the object
methods in Camera.py. It will append raw frames to the framesRaw array and output the converted frames onto
the Interface.

while cameraState or addState:
if not addState:

global frames, framesRaw
frame = camera.getFrame()
frames.append(frame)
framesRaw.append(camera.getRawFrame())
yield (b'--frame\r\n'

b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')

If it is in the state to dynamically add a face, it will get the last frame that was displayed before the dynamic add button
was pressed and freeze it on that frame. It will then process that frame through the dynamic add method. After it
finishes, it will return back to camera mode and exit dynamic add mode.

if addState:
frameToSave = len(frames) - 1
yield (b'--frame\r\n'

b'Content-Type: image/jpeg\r\n\r\n' + frames[frameToSave] + b'\r\n\r\n')
try:

dynamicAdd((framesRaw[frameToSave]))
camera.additionProcess()
cameraState = True
addState = False

except Exception as e:
exceptionType, exceptionObject, exceptionThrowback = sys.exc_info()
fileName = os.path.split(exceptionThrowback.tb_frame.f_code.co_filename)[1]
print(exceptionType, fileName, exceptionThrowback.tb_lineno)
print(e)

break

If the online mode button is pressed, the application will switch to the Google Sheets output

24 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

if onlineState:
camera.goOnline()
onlineState = False

Finally every time the camera mode and dynamic add mode is exited, it will mark everyone who was not present as
absent.

markAbsentUnmarkedExcel()

The addFace() method and onlineMode() method are both used to toggle booleans that control the modes the
application is in.

@app.route('/add-face')
def addFace():

global addState
addState = True
return render_template('index.html')

@app.route('/online-mode')
def onlineMode():

global onlineState
onlineState = True
return render_template('index.html')

The video_feed() method simply places the video feed into the web based dashboard.

@app.route('/video_feed')
def video_feed():

return Response(gen(VideoCamera(source=-1)),
mimetype='multipart/x-mixed-replace; boundary=frame')

Main Method

The main method in Interface.py launches the Dashboard through using the run() method on the ui object.

if __name__ == '__main__':
try:

ui.run()
except Exception as e:

print(e)

1.3. Files 25

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

LivenessDetection.py

The LivenessDetection.py file controls the LivenessDetection model processing which differentiates real faces
from flat images.

Imports

from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, Flatten
from tensorflow.keras.layers import Conv3D, MaxPooling3D

• Keras: Necessary for deep learning functions to process the model

Methods

The getModel() method is used to process the data within a model so that is more usable. This is done through a
Sequential model with several layers to correctly process the data.

def getModel():
model = Sequential()
model.add(Conv3D(32, kernel_size=(3, 3, 3),

activation='relu',
input_shape=(24, 100, 100, 1)))

model.add(Conv3D(64, (3, 3, 3), activation='relu'))
model.add(MaxPooling3D(pool_size=(2, 2, 2)))
model.add(Conv3D(64, (3, 3, 3), activation='relu'))
model.add(MaxPooling3D(pool_size=(2, 2, 2)))
model.add(Conv3D(64, (3, 3, 3), activation='relu'))
model.add(MaxPooling3D(pool_size=(2, 2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(2, activation='softmax'))

return model

The getModelPred() method is used to simply initialize and load the model with its respective weights.

26 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

def getModelPred():
model = getModel()
model.load_weights("Model/model.h5")
return model

Sheets.py

The Sheets.py file controls the outputs to a Google sheet. There are several helper methods in Sheets.py that
make outputting possible.

Imports

import gspread
import pygsheets
from oauth2client.service_account import ServiceAccountCredentials
from gspread_formatting import *
import datetime
from init import fullStudentNames
from datetime import datetime

• gspread: Necessary to access the google sheet

• pygsheets: Necessary to manipulate the Google Sheet

• oauth2client: Necessary to connect to Google’s servers

• gspread_formatting: Necessary to format the Google Sheet

• datetime: Necessary to get the date

• init: Necessary to access the arrays

Methods

The loadLists() method will allow for us to load the list information from Full Student Names.txt into
the arrays in init.py

def loadLists(textFile):
with open(textFile) as file:

list = file.readlines()
file.close()
list = [x[:-1] for x in list]

return list

The absentCell() method marks a given cell red.

def absentCell(cell):
Add Red Color Cell Format
format = CellFormat(backgroundColor=Color(.96, .80, .80))
Update a Cell as Absent
format_cell_range(sheet, cell, format)

The presentCell() method marks a given cell green.

1.3. Files 27

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

def presentCell(cell):
Add Green Color Cell Format
format = CellFormat(backgroundColor=Color(.85, .93, .82))
Update a Cell as Present
format_cell_range(sheet, cell, format)

The lateCell() method marks a given cell yellow.

def lateCell(cell):
Add Yellow Color Cell Format
format = CellFormat(backgroundColor=Color(1.00, .95, .80))
Update a Cell as Late
format_cell_range(sheet, cell, format)

The resetCell() method marks a given cell white.

def resetCell(cell):
Add White Color Cell Format
format = CellFormat(backgroundColor=Color(1, 1, 1))
Reset a Cell
format_cell_range(sheet, cell, format)
sheet.update_acell(cell, '')

The addKey() method adds the Sheet key to the upper left hand corner of the sheet.

def addKey():
Reset Top Cells
for n in range(1, 5):

cellLocation = 'A' + str(n)
resetCell(cellLocation)

Add Key Colors and Labels
presentCell('A2')
absentCell('A3')
lateCell('A4')
format = CellFormat(textFormat=TextFormat(bold=True))
format_cell_range(sheet, 'A1', format)
sheet.update_acell('A1', 'KEY')
sheet.update_acell('A2', 'Present')
sheet.update_acell('A3', 'Absent')
sheet.update_acell('A4', 'Late')

The addStudentNames() method adds the Student names in the first column of the sheet.

def addStudentNames():
Format and write Student Name subtitle
format = CellFormat(textFormat=TextFormat(bold=True))
format_cell_range(sheet, 'A8', format)
sheet.update_acell('A8', 'Student Names')
Write student names from init list
for n in range(0, len(fullStudentNames)):

cellLocation = 'A' + str(9 + n)
sheet.update_acell(cellLocation, fullStudentNames[n])

The addDate() method adds the current date. In coordination with the application, it marks the date the application
is launched.

28 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

def addDate():
Get and format date
date = datetime.today().strftime('X%m/X%d')
date = date.replace('X0', 'X').replace('X', '')
character number for "B"
cellStartNum = ord('B')
Flag boolean to exit loop
emptyDateCell = False
Format Date Subtitles
format = CellFormat(textFormat=TextFormat(bold=True), horizontalAlignment='RIGHT')

while not emptyDateCell:
Get Current cell location
currentCell = str(chr(cellStartNum)) + '8'
If the date is already there, then you do not need to add another column
if sheet.acell(currentCell).value == date:

break
else:

If cell is not empty, move over one cell horizontally
if sheet.acell(currentCell).value != '':

cellStartNum = cellStartNum + 1
else:

If cell is empty, write the date
format_cell_range(sheet, currentCell, format)
sheet.update_acell(currentCell, date)
emptyDateCell = True

The formatPage() method formats the page as needed if it has already not been formatted.

def formatPage():
Adds key, student names, and current date
if sheet.acell('A1').value != 'KEY':

addKey()
addStudentNames()
addDate()

The getRowNumber() method gets the row number to mark. This is used to mark a certain student.

def getRowNum(personToFind):
startCellNum = 9
for x in range(0, len(fullStudentNames)):

Find how many to go down from row 9 by comparing names + arrays
if fullStudentNames[x].strip() == personToFind.strip():

Update row to go to
startCellNum += x

return startCellNum

The getColumnLetter() method gets the column letter to mark. This is used to mark on a certain date.

def getColumnLetter(sheet):
Start column is B
cellStartNum = ord('B')
Get date because column will correspond
date = datetime.today().strftime('X%m/X%d')
date = date.replace('X0', 'X').replace('X', '')
columnFound = False
Compare current date to column date

(continues on next page)

1.3. Files 29

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

(continued from previous page)

while not columnFound:
currentCell = str(chr(cellStartNum)) + '8'
If found, return cell column Letter
if sheet[currentCell].value == date:

return cellStartNum
else:

cellStartNum += 1

The updatePresentPerson() method updates a Google sheet passed on the person’s name.

def updatePresentPerson(personToFind):
Change numerical values to cell value
cellToPresent = chr(getColumnLetter(ws)) + str(getRowNum(personToFind))
Mark present
presentCell(cellToPresent)

The updateAbsentPerson() method updates an Google sheet passed on the person’s name.

def updateAbsentPerson(personToFind):
Change numerical values to cell value
cellToAbsent = chr(getColumnLetter(ws)) + str(getRowNum(personToFind))
Mark Absent
absentCell(cellToAbsent)

The updateLatePerson() method updates a Google Sheet passed on the person’s name.

def updateLatePerson(personToFind):
Change numerical values to cell value
cellToAbsent = chr(getColumnLetter(ws)) + str(getRowNum(personToFind))
Mark Late
lateCell(cellToAbsent)

The markOnce() method is used to make sure a cell is not overwritten.

def markOnce(name):
Change numerical values to cell value
cellToCheck = str(chr(getColumnLetter())) + str(getRowNum(name))
Return False if cell is not white or red
return worksheet.cell(cellToCheck).color != (None, None, None, None) or worksheet.

→˓cell(cellToCheck).color != (
.96, .80, .80, 1.00)

The markAbsentUnmarked() method will mark all people who were not present as absent.

def markAbsentUnmarked():
rowStart = 9
for x in range(0, len(fullStudentNames)):

cellToCheck = str(chr(getColumnLetter())) + str(rowStart)
if worksheet.cell(cellToCheck).color == (None, None, None, None):

absentCell(cellToCheck)
rowStart += 1

else:
rowStart += 1

30 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

Main Method

The main method will authorize all of the necessary credentials and then find the Google Sheet within the Google
Drive of the respective account. It will lastly autoformat the page.

try:
fullStudentNames = loadLists("List Information/Full Student Names")
Gets scope of sheet
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/

→˓auth/spreadsheets",
"https://www.googleapis.com/auth/drive.file", "https://www.googleapis.

→˓com/auth/drive"]
Gets sheet credentials and authorizes it
creds = ServiceAccountCredentials.from_json_keyfile_name("creds.json", scope)
client = gspread.authorize(creds)
Opens sheet based on sheet name
sheet = client.open("19/20 Attendance").sheet1

Authorize Pygsheets library
gc = pygsheets.authorize()
worksheet = gc.open('19/20 Attendance').sheet1
formatPage()

except Exception as e:
print(e)

TransferLearning.py

The TransferLearning.py file has been abandoned. However, many methods within TransferLearning.py are
used in other modules. TransferLearning.py used to be the original core file until the switch to Interface.
py.

Imports

import sys
from init import *
from Sheets import *
from DynamicAddition import *
import cv2
import face_recognition
import numpy as np
import os
from multiprocessing import Process
from LivenessDetection import getModel

• os: Necessary to access file systems

• sys: Necessary to access the operating system

• cv2: Necessary to access computer vision tools

• face_recognition: Necessary to access face recognition tools

• init: Necessary to access the arrays

• numpy: Necessary to access Linear Algebra functions

• LivenessDetection: Necessary to access the Liveness Detection models

1.3. Files 31

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

• Sheets: Necessary to access Google Sheets methods

• DynamicAddition: Necessary to access DynamicAddition method

• multiprocessing: Necessary to run multiple methods at once

Variables

TransferLearning.py takes advantage of global variables in order to modularize the complete file. Below are
all the global variables in TransferLearning.py.

global fullStudentNames, faceNamesKnown, encodingNames, model, video, encodingList,
→˓faceLocations, faceEncodingsKnown
global faceEncodings, faceNames, inputFrames, processThisFrame, x, file, smallFrame,
→˓rgbFrame, livenessVal, name

Methods

The checkIfHere() method makes sure that each name found in the frame only appears once.

def checkIfHere(name, nameToCheck):
if name is nameToCheck:

with open("AttendanceSheet.txt", 'r') as f:
if nameToCheck in f.read():

pass
else:

with open("AttendanceSheet.txt", 'a') as f2:
f2.write(name + "\n")
f2.close()

The getFolderSize() method returns the folder size of a given folder.

Method to get amount of files in a certain folder
def getFolderSize(folderName):

fileList = os.listdir(folderName)
numberFiles = len(fileList)
return numberFiles

The adjustBrightness() method takes advantage of HSV values in order to adjust the brightness when the
frame is too dark.

Method to adjust to a certain brightness
def adjustBrightness(img):

Converts frame from RGB to HSV
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
Splits HSV type into 3 different arrays
h, s, v = cv2.split(hsv)
Calculates image's average brightness
averageBrightness = np.sum(v) / np.size(v)
Set minimum brightness
brightnessThreshold = 125
Calculate how much to increase the brightness
brightnessIncrease = brightnessThreshold - int(averageBrightness)
See if average brightness exceeds the threshold
if averageBrightness < brightnessThreshold:

(continues on next page)

32 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

(continued from previous page)

Increases brightness
lim = 255 - brightnessIncrease
v[v > lim] = 255
v[v <= lim] += brightnessIncrease

Merge the HSV values back together
finalHSV = cv2.merge((h, s, v))
Redetermine image value & Return Image
img = cv2.cvtColor(finalHSV, cv2.COLOR_HSV2BGR)
return img

The toList() method, loadLists(), and loadDictionary() methods are used in order to manipulate the
text files in List Information/ and load all the arrays with the correct information.

def toList(dictionary):
listToReturn = list(dictionary.values())
index = int(len(listToReturn))
listToReturn = listToReturn[:index]
return listToReturn

def loadLists(textFile):
with open(textFile) as file:

list = file.readlines()
file.close()
list = [x[:-1] for x in list]

return list

def loadDictionary(file, dictionary):
with open(file, "rt") as f:

for line in f.readlines():
dictionary[line.strip()] = None

The runInParallel() method allows us to run function in parallel. It is most notably used for dynamic addition.

def runInParallel(*fns):
proc = []
for fn in fns:

p = Process(target=fn)
p.start()
proc.append(p)

for p in proc:
p.join()

The getLivenessValue() method manipulates the matrices of the last 24 frames and is able to return a liveness
value from 0 to 1. The higher the value the more live the frame is.

def getLivenessValue(frame, inputFrames, model):
livenessFrame = cv2.resize(frame, (100, 100))
livenessFrame = cv2.cvtColor(livenessFrame, cv2.COLOR_BGR2GRAY)
inputFrames.append(livenessFrame)
input = np.array([inputFrames[-24:]])
input = input / 255
if input.size == 240000:

input = input.reshape(1, 24, 100, 100, 1)
pred = model.predict(input)

(continues on next page)

1.3. Files 33

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

(continued from previous page)

return pred[0][0]
return 0.96

Omitted Method Documentation

Due to similarities in TransferLearning.py and Camera.py, documentation for the preProcess(),
optimizeWebcam(), recognizeFaces(), dynamicallyAdd(), writeOnStream(), and
writeToFile() methods have been omitted in this page and have instead have their documentations on the
Camera.py documentation. This allows for the brevity of documentation.

Main Method

The main method here combines several of the methods in order to to put together the complete application. When q
is pressed, the application will end.

if __name__ == '__main__':
preProcess()
while True:

try:
Open Webcam + Optimize Webcam
ret, frame = video.read()
optimizeWebcam(frame)
recognizeFaces()
dynamicallyAdd(frame)
writeOnStream(frame)
writeToFile()
cv2.imshow('Frame', frame)

If q is pressed, exit loop
if cv2.waitKey(20) & 0xFF == ord('q'):

break

except Exception as e:
exceptionType, exceptionObject, exceptionThrowback = sys.exc_info()
fileName = os.path.split(exceptionThrowback.tb_frame.f_code.co_

→˓filename)[1]
print(exceptionType, fileName, exceptionThrowback.tb_lineno)
print(e)

== Post Program
→˓==

Upon exiting while loop, close web cam
video.release()
cv2.destroyAllWindows()

markAbsentUnmarked()

34 Chapter 1. Table of Contents

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

1.4 Contact

1.4.1 Email

If you have any questions, you can email me at samratsahoo2013@gmail.com

1.4.2 File an Issue

If you have an issue, you can file it on Github.

1.4.3 Other Social Media

• Twitter

• LinkedIn

1.4.4 Research Portfolio

You can find all of the research conducted over the past year at my Research Portfolio.

1.4. Contact 35

mailto:samratsahoo2013@gmail.com
https://github.com/SamratSahoo/Facial-Recognition-Attendance-Tracker
https://twitter.com/SamratSahoo2013
https://twitter.com/SamratSahoo2013
https://samratsahoo.weebly.com

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

36 Chapter 1. Table of Contents

CHAPTER 2

About the ISM Program

This project was made for the Independent Study Mentorship Program. The Independent Study Mentorship Program
is a rigorous research-based program offered at Frisco ISD schools for passionate high-achieving individuals.

Throughout the course of the program, students carry-out a year-long research study where they analyze articles and
interview local professionals. Through the culmination of the research attained, students create an original work, pre-
sented at research showcase, and a final product that will be showcased at final presentation night. Through the merits
of this program, individuals are able to follow their passions while increasing their prominence in the professional
world and growing as a person.

The ISM program is a program in which students carry-on skills that not only last for the year, but for life. ISM
gives an early and in-depth introduction to the students’ respective career fields and professional world. Coming out
of this program, students are better equipped to handle the reality of the professional world while having become
significantly more knowledgeable of their respective passions. The ISM program serves as the foundation for the
success of individuals in the professional world.

37

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

38 Chapter 2. About the ISM Program

CHAPTER 3

Project Preface

This attendance system uses image data sets to create an average encoding of the person. This encoding is then
compared with frame encodings from the camera stream. The respective encoding with the least variance is the
chosen face that is recorded.

39

Facial Recognition Attendance Tracker Documentation, Release 1.0.0

40 Chapter 3. Project Preface

CHAPTER 4

Acknowledgements

I would just like to give a special thank you to Adam Geitgey for the creation of his face_recognition class.

I would also like to give a special thanks to the following individuals for their contributions to my research throughout
this project.

• Trey Blankenship [Raytheon]

• Won Hwa Kim [UT Arlington]

• Tim Cogan [ams AG]

• Vijay Nidumolu [Samsung Electronics America]

• Sehul Viras [Dallas Baptist University & IntelliCentric]

One last thank you for the Radicubs Robotics Team for helping me test this attendance tracker.

41

https://github.com/ageitgey
https://radicubs.wixsite.com/robotics

	Table of Contents
	Setup
	Directories
	Files
	Contact

	About the ISM Program
	Project Preface
	Acknowledgements

